### SYNTHESIS AND CYTOTOXICITY OF 3-(HETARYLTHIO)-1-PROPYNYL-(TRIMETHYL)SILANES

# R. Abele, E. Abele, K. Rubina, O. Dzenitis, P. Arsenyan, I. Shestakova, A. Nesterova, I. Domracheva, J. Popelis, S. Grinberga, E. Lukevics

We have developed a two-step method for synthesis of 3-(hetarylthio)-1-propynyl(trimethyl)silanes from thiols in a phase-transfer catalysis system  $HC \equiv CCH_2Br$ -solid  $K_2CO_3$ -18-crown-6-toluene followed by reaction with n-BuLi-Me<sub>3</sub>SiCl in ether or THF. We have observed that 3-[1,3-bis(trimethylsilyl)-2-propynyl]thioindole displays high cytotoxicity in HT-1080 and MG-22A tumor cell lines.

**Keywords:** alkynes, heteroaromatic compounds, silicon-containing compounds, phase-transfer catalysis, cytotoxicity.

Heteroaromatic sulfides are of interest as biologically active compounds [1]. In particular, high antitumor activity and cytotoxicity have been established for pyridine [2-9], quinoline [10-16], indole [17-21], benzothiazole [22], benzimidazole [23], uracil [24], and purine sulfides [25]. The results of a study of the antitumor activity of different silanes have been summarized in [26]. We have established that heteroaromatic sulfides of the type HetS(CH<sub>2</sub>)<sub>n</sub>SiR<sub>3</sub> (n = 1,3) lower the blood cholesterol level and exhibit vasodilator properties [27]. The cytotoxicity of heteroaromatic sulfides of the type HetSCH<sub>2</sub>C=CSiMe<sub>3</sub> was not studied previously, and this is the objective of this work.



We have developed a novel two-step method for synthesis of 3-(hetarylthio)-1propynyl(trimethyl)silanes from thiols. Heteroaromatic thiols 1-7, 22 in the system HC=CCH<sub>2</sub>Br-solid K<sub>2</sub>CO<sub>3</sub>-18-crown-6-toluene form hetaryl propargyl sulfides 8-14, 23 in up to 100% yields. The high efficiency of this

Latvian Institute of Organic Synthesis, Riga LV-1006; e-mail: abele@osi.lv. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 7, pp. 977-982, July, 2002. Original article submitted May 7, 2002.

phase-transfer catalysis system for alkylation of thiols has been demonstrated in [1, 27]. Consecutive reactions of sulfides **8-14** with *n*-BuLi and Me<sub>3</sub>SiCl in ether lead to formation of 3-(hetarylthio)-1-propynyl(trimethyl)silanes **15-21** in up to 83% yields (Tables 1-3).

Metalation of 3-(2-propynyl)thioindole 23 with butyllithium was carried out in THF due to problems connected with the solubility of the dilithium salt of 23 in ether. Reaction of sulfide 23 with *n*-BuLi (2.2 equivalents) in THF followed by treatment of the reaction mixture with excess of Me<sub>3</sub>SiCl leads to a mixture of silylated products 24 and 25 (45:55). During their separation by column chromatography on silica gel, N-desilylation of compounds 24 and 25 occurs. As a result, we isolated 3-(3-trimethylsilyl-2-propynyl)thioindole 26 (18% yield) and 3-[1,3-bis(trimethylsilyl)-2-propynyl]thioindole 27 (22% yield).



The biological activity of the compounds obtained were studied for two tumor cell lines: HT-1080 (human fibrosarcoma) and MG-22A (mouse hepatoma) (Table 4). The greatest cytotoxic effect is exhibited by 3-[1,3-bis(trimethylsilyl)-2-propynyl]thioindole (27), and specifically IC<sub>50</sub> is 5 µg/ml (CV test) for fibrosarcoma and 2 µg/ml (CV and MTT tests) for mouse hepatoma. We should note the very high level of NO generation for the indole derivative 27 (900% for the HT-1080 line, and 300% for the MG-22A line).

| Thiol | Het                       | t <sub>reaction</sub> , h | Sulfide | Yield<br>8-14, % | Silane   | Yield of silanes, % |
|-------|---------------------------|---------------------------|---------|------------------|----------|---------------------|
| 1     | Ph                        | 6                         | 8 [28]  | 78               | 15 [29]  | 65                  |
| 2     | 2-Pyridyi<br>2-Quinolyi   | 4                         | 9<br>10 | 95<br>70         | 16<br>17 | 54<br>83            |
| 4     | 2-Pyrimidyl               | 6                         | 11      | 100              | 18       | 23                  |
| 5     | 1-Methyl-2-<br>imidazolyl | 10                        | 12      | 91               | 19       | 51                  |
| 6     | 2-Benzoxazolyl            | 3                         | 13      | 86               | 20       | 13                  |
| 7     | 2-Benzthiazolyl           | 6                         | 14      | 63               | 21       | 77                  |

TABLE 1. Synthesis of Hetaryl Propargyl Sulfides **8-14** and 3-(Hetarylthio)-1-propynyl(trimethyl)silanes **15-21** 

|            |                                                                                                  | BOND S                                                     |                                                         |  |  |
|------------|--------------------------------------------------------------------------------------------------|------------------------------------------------------------|---------------------------------------------------------|--|--|
| Alkyne     | <sup>1</sup> H NMR, $\delta$ , ppm, $J$ (Hz)                                                     | Unit SCU C=CP                                              |                                                         |  |  |
|            |                                                                                                  | Het                                                        | SCH <sub>2</sub> C≡CK                                   |  |  |
| 9          | 2.18 (1H, t, <i>J</i> = 2.6, CH);                                                                | 119.85 (C-5), 122.00 (C-3),                                | 18.16 (CH <sub>2</sub> ),                               |  |  |
|            | $3.95 (2H, d, J = 2.6, SCH_2); 7.00, 7.18,$                                                      | 136.09 (C-4), 149.52 (C-6),                                | 70.42 (≡CH),                                            |  |  |
|            | 7.50 and 8.44 (4H, m, ring protons)                                                              | 157.05 (C-2)                                               | 80.06 (≡C)                                              |  |  |
| 10         | 2.19 (1H, t, $J = 2.8$ , CH);<br>4.16 (2H, d, $I = 2.8$ , SCH); 7.22, 7.42                       | 120.33 (C-3), 125.52 (C-6),<br>126.07 (C-4a), 127.59 (C-5) | 17.91 (CH <sub>2</sub> ),                               |  |  |
|            | 7.66, 7.92 (6H. m. ring protons)                                                                 | 128.11 (C-7), 129.76 (C-8),                                | 70.48 (=CH),<br>80.02 (=C)                              |  |  |
|            | , , , , , , , , ,                                                                                | 135.70 (C-4), 148.17 (C-8a),                               | 00:02 (-0)                                              |  |  |
|            |                                                                                                  | 157.05 (C-2)                                               |                                                         |  |  |
| 11         | 2.18 (1H, t, $J = 2.6$ , CH);<br>4.00 (2H, d, $I = 2.6$ , SCH);                                  | 116.77 (C-5),<br>157.28 (C. 4 and C. 6)                    | 19.15 (CH <sub>2</sub> ),                               |  |  |
|            | $4.00(2H, d, J = 2.0, SCH_2),$<br>6.98(1H, m. 5-H):                                              | 137.28 (C-4 and C-6),<br>170 (C-2)                         | 70.38 (≡CH),<br>79.49 (≡C)                              |  |  |
|            | 8.51 (2H, m and m, 4- and 6-H)                                                                   |                                                            | (-0)                                                    |  |  |
| 12         | 2.18 (1H, t, <i>J</i> = 2.6, CH);                                                                | 122.80 (C-5), 129.59 (C-4),                                | 23.14 (CH <sub>2</sub> ),                               |  |  |
|            | $3.67 (3H, s, CH_3); 3.67 (2H, d, J = 2.6, SCH); (0.72) (2H, d, J = 2.6)$                        | 139.29 (C-2), 33.42 (NCH <sub>3</sub> )                    | 71.77 (≡CH),                                            |  |  |
| 12         | 2.20(111 + L = 2.8) CU:                                                                          | 100.00 (C () 119 (7 (C 5)                                  | /9.18 (≡C)                                              |  |  |
| 13         | 2.30 (1H, t, J = 2.8, CH);<br>$4.07 (2H, d, J = 2.8, SCH_2);$                                    | 109.99 (C-6), 118.67 (C-5),<br>124.15 (C-7), 124.40 (C-4). | $20.00 (CH_2),$<br>72 38 (=CH)                          |  |  |
|            | 7.26 (2H, m, 5- and 6-H); 7.45 and 7.62                                                          | 141.74 (C-7a), 152.00 (C-3a),                              | 77.86 (≡C)                                              |  |  |
|            | (2H, m and m, 7- and 4-H)                                                                        | 162.99 (C-2)                                               |                                                         |  |  |
| 14         | 2.29 (1H, t, $J = 2.6$ , CH);<br>4.11 (2H, d, $J = 2.6$ , SCH);                                  | 121.02 (C-7), 121.75 (C-4),                                | 21.52 (CH <sub>2</sub> ),                               |  |  |
|            | 7.2-7.9 (4H. m. ring protons)                                                                    | 135.40 (C-7a), 152.95 (C-3a).                              | 72.28 (=CH),<br>76.37 (=C)                              |  |  |
|            |                                                                                                  | 164.51 (C-2)                                               | 10.57 (-0)                                              |  |  |
| 16         | 0.05 (9H, s, SiMe <sub>3</sub> ); 3.91 (2H, s, CH <sub>2</sub> );                                | 119.61 (C-5), 121.85 (C-3),                                | -0.24 (SiMe <sub>3</sub> ),                             |  |  |
|            | 6.90, 7.13, 7.41 and 8.35 (4H, m, ring                                                           | 135.88 (C-4), 149.29 (C-6),<br>157 (C-2)                   | 19.41 (CH <sub>2</sub> ),                               |  |  |
|            | protons)                                                                                         | 137 (C-2)                                                  | 101.36 (SC=)                                            |  |  |
| 17         | 0.06 (9H, s, SiMe <sub>3</sub> ); 4.12 (2H, s, CH <sub>2</sub> );                                | 120.32 (C-3), 125.44 (C-6),                                | -0.12 (SiMe <sub>3</sub> ),                             |  |  |
|            | 7.14, 7.34, 7.60 and 7.83 (6H, m, ring                                                           | 126.01 (C-4a), 127.59 (C-5),                               | 19.22 (CH <sub>2</sub> ),                               |  |  |
|            | protons)                                                                                         | 128.06 (C-7), 129.72 (C-8),<br>135.59 (C 4), 148.15 (C 82) | 87.68 (≡CSi),                                           |  |  |
|            |                                                                                                  | 157.52 (C-2)                                               | 101.37 (SC≡)                                            |  |  |
| 18         | 0.13 (9H, s, SiMe <sub>3</sub> ); 3.97 (2H, s, CH <sub>2</sub> );                                | 116.67 (C-5),                                              | -0.20 (SiMe <sub>3</sub> ),                             |  |  |
|            | 6.98 (1H, m, 5-H);                                                                               | 157.22 (C-4 and C-6),                                      | 20.42 (CH <sub>2</sub> ),                               |  |  |
|            | 8.52 (2H, m, 4- and 6-H)                                                                         | 1/1.20 (C-2)                                               | $87.59 (\equiv CS1),$<br>100 82 (SC=)                   |  |  |
| 19         | 0.11 (9H s SiMe <sub>2</sub> ): 3.70 (2H s CH <sub>2</sub> ):                                    | 122.61 (C-5) 129.46 (C-4)                                  | -0.68 (SiMe <sub>2</sub> )                              |  |  |
| 17         | 3.74 (3H, s, NCH <sub>3</sub> ); 6.97 and 7.11 (2H,                                              | 139.10 (C-2), 33.35 (NCH <sub>3</sub> )                    | 24.49 (CH <sub>2</sub> ),                               |  |  |
|            | both d, $J = 0.6$ , ring protons)                                                                |                                                            | 88.35 (≡CSi),                                           |  |  |
| •          |                                                                                                  |                                                            | 100.59 (SC≡)                                            |  |  |
| 20         | 0.13 (9H, s, S1Me <sub>3</sub> ); 4.11 (2H, s, CH <sub>2</sub> );<br>7 2-7 6 (4H m ring protons) | 109.94 (C-6), 118.61 (C-5),<br>124.08 (C-7), 124.36 (C-4)  | -0.29 (S1Me <sub>3</sub> ),<br>21.92 (CH <sub>2</sub> ) |  |  |
|            | 7.2 7.6 (411, 11, 111g protons)                                                                  | 141.83 (C-7a), 151.98 (C-3a),                              | 89.81 (≡CSi),                                           |  |  |
|            |                                                                                                  | 163.22 (C-2)                                               | 98.92 (SC≡)                                             |  |  |
| 21         | 0.16 (9H, s, SiMe <sub>3</sub> ); 4.16 (2H, s, CH <sub>2</sub> );                                | 121.02 (C-7), 121.76 (C-4),                                | -0.24 (SiMe <sub>3</sub> ),                             |  |  |
|            | 7.1-7.9 (4H, m, ring protons)                                                                    | 124.07 (C-6), 124.46 (C-5), 126.12 (C-7a), 135.50 (C-3a)   | 22.93 (CH <sub>2</sub> ),                               |  |  |
|            |                                                                                                  | 153.05 (C-2)                                               | 89.90 (≡CSI),<br>99.39 (SC≡)                            |  |  |
| 26         | 0.05 (9H, s, SiMe <sub>3</sub> ); 3.36 (2H, s, CH <sub>2</sub> );                                | 111.43 (C-5), 119.44 (C-4),                                | -0.19 (SiMe <sub>3</sub> ),                             |  |  |
|            | 7.1-7.4 and 7.80 (5H, m, ring protons);                                                          | 119.44 (C-6), 120.52 (C-3),                                | 26.14 (CH <sub>2</sub> ),                               |  |  |
|            | 8.37 (1H, br. s, NH)                                                                             | 122.66 (C-7), 129.32 (C-3a), 130.35 (C-7a), 136.13 (C-7a)  | 88.19 (≡CSi),                                           |  |  |
| 27         | 0.05 and $0.22$ (18H, s and s SiMs):                                                             | 106.80 (C - 5) 111.20 (C - 4)                              | 102.92 (SC≡)<br>2.99                                    |  |  |
| <i>L</i> / | 3.02 (1H, s, CH); 7.2-7.4 and 7.82 (5H.                                                          | 119.69 (C-6), 120.35 (C-3).                                | -2.99<br>(CHSi(CH <sub>3</sub> ) <sub>3</sub> ).        |  |  |
|            | m, ring protons); 8.22 (1H, br. s, NH)                                                           | 122.53 (C-7), 129.45 (C-3a),                               | 0.07 (SiMe <sub>3</sub> ),                              |  |  |
|            |                                                                                                  | 132.88 (C-7a), 136.13 (C-2)                                | 29.87 (CH <sub>2</sub> ),                               |  |  |
|            |                                                                                                  |                                                            | δ /.55 (≡CS1),<br>106 50 (SC=)                          |  |  |
| l          | I                                                                                                |                                                            | 100.00 (00=)                                            |  |  |

## TABLE 2. <sup>1</sup>H and <sup>13</sup>C NMR Spectra of Alkynes 9-14, 16-21, 26, 27

TABLE 3. Mass Spectra of Alkynes 9-14, 16-21, 23-27

| Alkyne | $m/z (I_{\rm rel}, \%)$                                                                                  |
|--------|----------------------------------------------------------------------------------------------------------|
|        |                                                                                                          |
| 9      | 148 (100, M <sup>+</sup> ), 117 (28),104 (24), 83 (17), 79 (47), 69 (17), 57 (14), 51 (40)               |
| 10     | 198 (100, M <sup>+</sup> ), 167 (10), 129 (17)                                                           |
| 11     | 149 (100, M <sup>+</sup> ), 123 (12), 118 (14), 84 (9), 80 (13), 69 (12), 57 (14), 53 (18)               |
| 12     | 152 (100, M <sup>+</sup> ), 137 (41), 113 (37), 106 (17), 72 (100), 55 (8)                               |
| 13     | 189 (98, M <sup>+</sup> ), 160 (18), 150 (43), 122 (100), 63 (10)                                        |
| 14     | 205 (100, M <sup>+</sup> ), 173 (15), 166 (32), 160 (13), 129 (13), 122 (17), 108 (34), 102 (10) 69 (10) |
| 16     | 220 (97, M <sup>+</sup> ), 206 (100), 191 (14), 168 (21), 162 (10), 138 (13), 83 (17), 73 (14)           |
| 17     | 271 (18, M <sup>+</sup> ), 256 (40), 198 (100), 180 (8), 128 (17), 101 (7), 73 (10)                      |
| 18     | 221 (100, M <sup>+</sup> ), 207 (97), 168 (19), 163 (14), 131 (12), 96 (8), 83 (23), 73 (17), 53 (13)    |
| 19     | 224 (100, M <sup>+</sup> ), 209 (92), 191 (33), 171 (87), 165 (34), 151 (13), 141 (10), 133 (15),        |
|        | 119 (15), 113 (33), 96 (15), 83 (45), 72 (37), 55 (17)                                                   |
| 20     | 260 (100, M <sup>+</sup> ), 246 (42), 208 (25), 176 (17), 150 (25), 122 (40), 96 (17), 83 (47), 73 (20)  |
| 21     | 277 (100, M <sup>+</sup> ), 262 (43), 244 (17), 186 (13), 166 (21), 108 (22), 83 (18), 73 (17)           |
| 23     | 186 (100, M <sup>+</sup> ), 154 (7), 115 (9), 93 (6)                                                     |
| 24     | 331 (23, M <sup>+</sup> ), 220 (100), 73 (54), 45 (9)                                                    |
| 25     | 403 (27, M <sup>+</sup> ), 330 (20), 298 (27), 286 (11), 261 (27), 246 (23), 220 (100), 183 (22),        |
|        | 73 (54)                                                                                                  |
| 26     | 259 (24, M <sup>+</sup> ), 186 (23), 148 (100), 121 (9), 73 (9)                                          |
| 27     | 331 (35, M <sup>+</sup> ), 258 (100), 242 (19), 226 (22), 183 (42), 174 (58), 148 (39), 73 (59)          |

Quinoline derivative 17 and indole derivative 26 also displayed high cytotoxicity for the MG-22A line  $(1 \,\mu g/ml, MTT \text{ test}).$ 

|       | Cell lines               |     |             |                          |     |        |  |
|-------|--------------------------|-----|-------------|--------------------------|-----|--------|--|
| Com-  | HT-1080                  |     |             | MG-22A                   |     |        |  |
| pound | IC <sub>50</sub> , µg/ml |     | NO $CV *^2$ | IC <sub>50</sub> , µg/ml |     |        |  |
|       | CV                       | MTT | NO, CV *    | CV                       | MTT | NO, CV |  |
| 15    | 44                       | 77  | 31          | 35                       | 24  | 91     |  |
| 16    | 27                       | 35  | 500         | 25                       | 18  | 83     |  |
| 17    | 24                       | 36  | 83          | 3                        | 1   | 500    |  |
| 18    | 27                       | 36  | 150         | 28                       | 14  | 73     |  |
| 19    | 57                       | *3  | 28          | 87                       | 21  | 14     |  |
| 20    | 42                       | 50  | 100         | 11                       | 13  | 500    |  |
| 21    | *3                       | *3  | 13          | *3                       | *3  | 13     |  |
| 26    | 9                        | 14  | 250         | 3                        | 1   | 200    |  |
| 27    | 5                        | 11  | 900         | 2                        | 2   | 300    |  |

TABLE 4. Cytotoxic Activity in vitro of Silanes 15-21\*

 $\overline{* \text{ IC}_{50} \text{ is the concentration killing 50\% of the cells; CV is staining by crystal}$ staining by 3-(4,5-dimethylthiazol-2-yl)-2,5violet; MTT is diphenyltetrazolium bromide.

\*<sup>2</sup> NO concentration, % (CV staining).
\*<sup>3</sup> No cytotoxic activity.

### **EXPERIMENTAL**

The <sup>1</sup>H and <sup>13</sup>C NMR spectra were recorded on a Varian 200 Mercury spectrometer (200 and 50 MHz) in CDCl<sub>3</sub>, internal standard hexamethyldisiloxane. The mass spectra were recorded on a GC-MS HP 6890 chromatograph/mass spectrometer with ionizing electron energy 70 eV. GLC analysis was carried out on a Chrom-5 chromatograph with flame-ionization detector and glass column ( $1.2 \times 3$  mm), packed with 5% OV-101 on Chromosorb W-HP (80-100 mesh). The carrier gas was nitrogen (60 cm<sup>3</sup>/min). The analysis temperature was varied over the range 180-250°C, depending on the composition of the reaction mixture. Thiophenol (1), 2-mercaptopyridine (2), 2-mercaptoquinoline (3), 2-mercaptopyrimidine (4), 2-mercapto-1-methylimidazole (5), 2-mercaptobenzoxazole (6), 2-mercaptobenzothiazole (7), and 18-crown-6 (Acros) were used without additional purification. Propargyl bromide and trimethylchlorosilane were distilled before the experiment. 3-Mercaptoindole was obtained from indole in the system iodine–KI–NH<sub>2</sub>CSNH<sub>2</sub>–H<sub>2</sub>O, as described in the literature [30]. Diethyl ether and THF were distilled over sodium and benzophenone.

General Procedure for Obtaining Hetaryl Propargyl Sulfides (8-14, 23). Propargyl bromide (2.7 ml, 30 mmol) were added to a suspension of thiol 1-7, 22 (20 mmol), 18-crown-6 (0.132 g, 0.5 mmol), powdered  $K_2CO_3$  (4.14 g, 30 mmol) in toluene (20 ml). The reaction mixture was stirred for 4-10 h at 20°C and then filtered, and the filtrate was evaporated down on a rotary evaporator. The residue was purified by column chromatography (eluent hexane–ethyl acetate in different ratios) and compounds 8-14, 23 were obtained (see Tables 1-3).

General Procedure for Obtaining 3-(Hetarylthio)-1-propynyl(trimethyl)silanes (15-21). 2.5 M solution of *n*-BuLi in hexane (4.4 ml, 11 mmol) was added to a solution of hetaryl propargyl sulfide 8-14 (10 mmol) in dry diethyl ether (40 ml) at 0°C, and the reaction mixture was stirred for 3 h at 20°C under a nitrogen atmosphere. Then trimethylchlorosilane (1.9 ml, 15 mmol) were added, and the reaction mixture was refluxed for 3 h and then washed with a saturated aqueous solution of ammonium chloride ( $2 \times 30$  ml), and the organic layer was dried with MgSO<sub>4</sub>; the ether was evaporated off under reduced pressure. The residue was purified by column chromatography (eluent hexane–ethylacetate in different ratios). As a result, compounds 15-21 were obtained (see Tables 1-3).

Silylation of 3-(2-Propynyl)thioindole (23). 3-(3-Trimethylsilyl-2-propynyl)-thioindole (26), and 3-[1,3-Bis(trimethylsilyl)-2-propynyl]thioindole (27). *n*-BuLi (4.0 ml, 10 mmol, 2.5 M in hexane) was added to a solution of compound 23 (1.03 g, 5.5 mmol) in tetrahydrofuran (50 ml) at 0°C, and the reaction mixture was stirred for 3 h at 20°C under a nitrogen atmosphere. Then trimethylchlorosilane (1.74 ml, 13.6 mmol) were added and the reaction mixture was refluxed for 3 h, then washed with a saturated aqueous solution of ammonium chloride ( $2 \times 30$  ml); the organic layer was dried with MgSO<sub>4</sub>, the ether was evaporated off under reduced pressure. The residue, consisting of compounds 24 and 25 was purified by column chromatography (eluent hexane–ethylacetate, 10:1). As a result, we obtained compounds 26 (0.25 g, 18% yield) and 27 (0.40 g, 22%) (see Tables 2 and 3).

#### REFERENCES

- 1. E. Abele, K. Rubina, R. Abele, I. Sleiksha, and E. Lukevics, *Khim. Geterotsikl. Soedin.*, 1197 (1999).
- 2. F. P. Invidiata, S. Grimaudo, P. Giammanco, and L. Giammanco, Farmco, 46, 1489 (1991); Chem. Abstr. 116:187514 (1992).
- 3. Varvaresou, A. Papadaki-Valiraki, and Th. Siatra-Papastaikoudi, *Bioorg. Med. Chem. Lett.*, **6**, 861 (1996).
- 4. K. Tomita, K. Chiba, S. Kashimoto, K. Shibamori, and Y. Tsuzuki, PCT Int. Appl. WO Pat. 9534559; *Chem. Abstr.* **124**:289559 (1996).

- 5. M. Gielen, A. Bouhdid, E. R. T. Tiekink, D. de Vos, and R. Willem, *Metal Based Drugs*, **3**, 75 (1996).
- 6. A. Gangjee, Yu. Zhu, and S. F. Queener, J. Med. Chem., 41, 4533 (1998).
- 7. A. P. Krapcho, S. N. Haydar, S. Truong-Chiott, M. P. Hacker, E. Menta, and G. Beggiolin, *Bioorg. Med. Chem. Lett.*, **10**, 305 (2000).
- 8. J. P. Dumas, T. K. Joe, H. C. E. Kluender, W. Lee, D. Nagarathnam, R. N. Sibley, N. Su, S. J. Boyer, and J. A. Dixon, PCT Int. Appl. WO Pat. 0123375; *Chem. Abstr.* **134**:266326 (2001).
- 9. Y. Tsuzuki, K. Chiba, and K. Hino, *Tetrahedron: Assym.*, 12, 1793 (2001).
- 10. W. O. Foye, S. H. An, and T. J. Maher, *J. Pharm. Sci.*, **73**, 1168 (1984).
- 11. D. T. Chu, J. J. Plattner, L. Klein, and L. L. Shen, Eur. Pat. 424802; Chem. Abstr. 115:136090 (1991).
- 12. Y. Ito, H. Kato, S. Yasuda, N. Yagi, T. Yoshida, and T. Suzuki, Jpn. Pat. 04117388; *Chem. Abstr.* 117:111597 (1992).
- 13. Y. Ito, H. Kato, S. Yasuda, T. Yoshida, Y. Yamamoto, and M. Ueshima, Jpn. Pat. 0570467; *Chem. Abstr.* **119**:139203 (1993).
- 14. Y. Ito, H. Kato, S. Yasuda, T. Yoshida, and Y. Yamamoto, Jpn. Pat. 04356491; *Chem. Abstr.* **119**:95504 (1993).
- 15. Y. H. Choi, A. Park, F. J. Schmitz, and I. van Altena, J. Natur. Prod., 56, 1431 (1993).
- M. Flores, A. Fracesch, P. Gallego, J. L. Chicharro, M. Zarzuelo, C. Fernandez, and I. Manzanares, PCT Int. Appl. WO Pat. 0177115; *Chem. Abstr.* 135:304055 (2001).
- 17. K. W. Bair, Canad. Pat. 2012626; Chem. Abstr. 117:26549 (1992).
- 18. J. H. Van Maarseveen, P. H. H. Hermkens, E. De Clercq, J. Balzarini, H. W. Scheeren, and C. G. Kruse, *J. Med. Chem.*, **35**, 3223 (1992).
- J. J. Bhatt, B. R. Shah, H. P. Shah, P. B. Trivedi, N. K. Undavia, and N. C. Desai, *Indian J. Chem.*, 33B, 189 (1994).
- S. Ikeda, U. Kimura, T. Ashizawa, K. Gomi, H. Saito, M. Kasai, J. Kanazawa, K. Sasaki, E. Nukui, M. Okabe, and S. Sato, US Pat. 5952355; *Chem. Abstr.* 131:2286546 (1999).
- C. Chin, R. L. Tolman, M. Q. Nguyen, and R. Holcomb, PCT Int. Appl. WO Pat. 0102394; *Chem. Abstr.* 134:86237 (2001).
- 22. R. C. Schnur, R. J. Gallaschun, D. H. Singleton, M. Grissom, D. E. Sloan, P. Goodwin, P. A. McNiff, A. F. J. Fliri, and F. M. Mangano, *J. Med. Chem.*, **34**, 1975 (1991).
- 23. E.-S. A. Ibrahim, A.-M. M. E. Omar, and M. A. Khalil, J. Pharm. Sci., 69, 1348 (1980).
- 24. J. Okada, K. Nakano, H. Miyake, and S. Yasufuku, Chem. Pharm. Bull., 30, 91 (1982).
- 25. K. Tsujihara, N. Harada, M. Oohashi, T. Kashida, and K. Oda, Jpn. Pat. 05194517; *Chem. Abstr.* **120**:164209 (1994).
- 26. E. Lukevics and L. Ignatovich, Appl. Organometal. Chem., 6, 113 (1992).
- 27. K. Rubina, E. Abele, P. Arsenyan, R. Abele, M. Veveris, and E. Lukevics, *Metal Based Drugs*, **8**, 85 (2001).
- 28. Kh. Filipova, Yu. L. Frolov, G. S. Liashenko, V. B. Modonov, N. A. Ivanova, I. D. Khalikhman, M. G. Voronkov, and N. S. Vyazankin, *Izv. Akad. Nauk SSSR, Ser. Khim.*, 1847 (1986).
- 29. J. B. Baudin, S. A. Julia, and R. Lorne, Bull. Soc. Chim. France, 440 (1992).
- 30. R. L. N. Harris, Org. Synth., 53, 1834 (1973).